
c33 

Journal of Organometallic Chemistry, 276 (1984) C33-C36 
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands 

Preliminary communication 

ABSOLUTE RATE CONSTANTS FOR THE COORDINATION OF OLEFINS 
TO A TRANSIENT COORDINATIVELY UNSATURATED COBALT 
COMPLEX 

SHIGERO OISHI, NORIKO KIHARA and AKERI HOSAKA 

Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229 (Japan) 

(Received July 7th, 1984) 

Summary 

Absolute second-order rate constants for the coordination of diethyl phenyl- 
phosphonite and various olefins to a transient coordinatively unsaturated cobalt 
complex, i.e. hydridotris(diethy1 phenylphosphonite)cobalt(I), have been mea- 
sured in cyclohexane at 23°C using laser flash photolysis techniques. The rate 
constants have been found to depend markedly on the structures of the olefins, 
e.g. 1.2 X lo* and 6.5 X lo4 M-’ s-l for l-hexene and tetramethylethylene, 
respectively. The mechanism of photochemical double-bond migration catalyzed 
by the transient is discussed on the basis of these rate constants. 

The nitrogen laser pulse excitation of hydridotetrakis(diethy1 phenyl- 
phosphonite)cobalt(I) (HCoP4) was found to generate a transient coordinatively 
unsaturated species (HCoP3) with a quantum yield of almost 1.0 [ 11. Further- 
more, in the mechanism of photo-isomerization of allylbenzene to P-methyl- 
styrene with an analogous cobalt complex, the species maintaining the catalytic 
cycle was suggested to be a coordinatively unsaturated species [ 21. 

We describe here the results of a laser flash photolysis study concerning the 
coordination of diethyl phenylphosphonite (P) and various olefins to HCoPJ , 
which corresponds to the primary step of the catalytic photo-isomerization of 
olefins. As far as we know, this is the first case of measurement of the absolute 
rate constants for the coordination of olefins to a metal complex, although 
many equilibrium constants have been reported in the case of nickel [ 3-5], 
rhodium [6,7], palladium [ 81, silver [ 91, iridium [lo], and platinum [ 111. 

Cyclohexane solutions of HCoP, (0.6 m&f) were deaerated by bubbling argon 
through the solutions, and then subjected to pulsed-laser photolysis at 23”C, us- 
ing a nitrogen laser (pulse width 5 ns, 4 mJ/pulse) for excitation. A right-angle 
optical system was employed for the excitation-analysis set-up and the volume 

0022-328X3/84/$03.00 o 1984 Elsevier Sequoia S.A. 



634 

analyzed was confirmed to be completely covered by the excitation beam [ 121. 
A transient species (X,, 580 nm, E 1.7 X lo3 M-’ cm-‘) was identified as 

a coordinatively unsaturated species (HCoP3), the decay trace of which was con- 
sistent with second-order reaction kinetics according to the re-coordination of P 
to HCoP, [ 11. In the time region in which the re-coordination can be ignored, 
namely, 5 ps per full scale of a storage scope, the addition of P or olefins has 
been found to bring about a new decay as shown in Fig. 1, which could be anal- 
yzed with pseudo-first-order reaction kinetics. Although the life time of the 
transient was extremely shortened by the addition of P or olefins, the transient 
spectra were the same as those in the case of HCoP4 alone; moreover, the UV 
and visible absorption spectra of HCoP, were independent of the presence of P 
or olefins. It can, therefore, be concluded that the decay in this time region is 
due to the coordination of additional P or olefins to the transient HCoP, . 

Fig. 1. Typical reaction trace at 680 nm for transient HCop, generated by laser ~U.ke excitation from 
H&P, alone in cyclohexane (0.6 m&f) (a) and in the presence of additional P (3.0 mkf) lb). 
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Equation 1 can be derived from Scheme 1. The first term in eq. 1 can be 
ignored in this time region, as stated above, and the pseudo-first-order rate con- 
stant corresponds to k”. From the plots of k” versus the concentrations of P or 
olefins (e.g. Fig. 2), the absolute second-order rate constants 12’ have been ob- 
tained (Table 1). 

d[HCoP,] 

dt 
= k[HCoP,][P] + k’[HCoP,][X] 

(1) = k[HCoP,]* + k”[HCoP,] 

(k” = k’[X]) 
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Fig. 2. Least-squares plots for pseudo-first-order rate constants k” versus the concentration of allvlbenzeae 

[Xl. 

TABLE 1 

SECOND ORDER RATE CONSTANTS FOR COORDINATION (M-l s-*1= 

P Ph(OEt)p 

r 

m 
0 

o- 

X 

1.4x10” b - 1.2x108 b 

1.3x108 -f 1.5x10’ 

2.4~10’ 7 2.5~10’ 

1.6~10’ - ‘2.4~10’ 

6.5 ~10~ 1.9x10’ 

a In cyclohexane. at 23’C. b Ref. 1. 

Although the second-order rate constants for P and allylbenzene are almost 
identical, the photo-isomerization of allylbenzene to fl-methylstyrene using 
HCoP4 has been shown to be completely prevented by the addition of P [2]. 
This indicates that the rate-determining step of the double-bond migration corre- 
sponds to a later step than the coordination of an olefin, probably the insertion 
of an olefin into the hydride-cobalt bond (Scheme 2). In other words, competi- 
tion is actually taking place between the coordination of P to HCoP3, leading to 
thermally unreactive HCoP4, and the rate-determining step. The coordination of 
an olefin to HCoP, does not render a stable complex, i.e. the dissociation is also 
fast. This can be explained by assuming that the stabilization originating from 
both a donating and a back-donating bond in the case of P is far greater than 
that in the case of an olefin [13]. 
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The second-order rate constants for the coordination of olefins have been 
found to decrease in the order terminal, cis-, and trans-olefins, by one order of 
magnitude each, and it is noticeable that Iz’ for tetramethylethylene is far 
smaller than that for 1-hexene, namely, by a factor of 5 X 10m4. These facts sug- 
gest severe steric requirements for the coordination of olefins to HCoP3. It can, 
therefore, be concluded that the isomerization of a terminal olefin to an internal 
olefin is favorable not only thermodynamically but also in the sense of steric re- 
quirements for the coordination of olefins to a transient catalyst species. 
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